Skip to Content

Found 14 Resources

Adaptive Introgression across Species Boundaries in Heliconius Butterflies

Smithsonian Libraries
It is widely documented that hybridisation occurs between many closely related species, but the importance of introgression in adaptive evolution remains unclear, especially in animals. Here, we have examined the role of introgressive hybridisation in transferring adaptations between mimetic Heliconius butterflies, taking advantage of the recent identification of a gene regulating red wing patterns in this genus. By sequencing regions both linked and unlinked to the red colour locus, we found a region that displays an almost perfect genotype by phenotype association across four species, H. melpomene, H. cydno, H. timareta, and H. heurippa. This particular segment is located 70 kb downstream of the red colour specification gene optix, and coalescent analysis indicates repeated introgression of adaptive alleles from H. melpomene into the H. cydno species clade. Our analytical methods complement recent genome scale data for the same region and suggest adaptive introgression has a crucial role in generating adaptive wing colour diversity in this group of butterflies.

Partial Complementarity of the Mimetic Yellow Bar Phenotype in Heliconius Butterflies

Smithsonian Libraries
Heliconius butterflies are an excellent system for understanding the genetic basis of phenotypic change. Here we document surprising diversity in the genetic control of a common phenotype. Two disjunct H. erato populations have each recruited the Cr and/or Sd loci that control similar yellow hindwing patterns, but the alleles involved partially complement one another indicating either multiple origins for the patterning alleles or developmental drift in genetic control of similar patterns. We show that in these H. erato populations cr and sd are epistatically interacting and that the parental origin of alleles can explain phenotypes of backcross individuals. In contrast, mimetic H. melpomene populations with identical phenotypes (H. m. rosina and H. m. amaryllis) do not show genetic complementation (F(1)s and F(2)s are phenotypically identical to parentals). Finally, we report hybrid female inviability in H. m. melpomene x H. m. rosina crosses (previously only female infertility had been reported) and presence of standing genetic variation for alternative color alleles at the Yb locus in true breeding H. melpomene melpomene populations (expressed when in a different genomic background) that could be an important source of variation for the evolution of novel phenotypes or a result of developmental drift. Although recent work has emphasized the simple genetic control of wing pattern in Heliconius, we show there is underlying complexity in the allelic variation and epistatic interactions between major patterning loci.

Hybridization and introgression in New World red mangroves, Rhizophora (Rhizophoraceae)

Smithsonian Libraries
* Premise of the study: Hybridization is common in both animals and plants and can lead to a diverse array of outcomes ranging from the generation of new ecotypes or species to the breakdown of morphological differences. Here, we explore the extent of hybridization in the three currently recognized New World Rhizophora species--R. mangle, R. racemosa, and the putative hybrid species R. harrisonii. * Methods: We assayed variation across the three recognized Rhizophora species using two noncoding chloroplast (cpDNA), two flanking microsatellite regions (FMRs), and six microsatellite loci. * Key results: Gene genealogies of cpDNA and FMRs showed a strong phylogeographic break across the Central American Isthmus, but little relationship to recognized species boundaries. Instead, individuals collected in the same ocean basin and classified as R. mangle and R. racemosa by morphological characteristics were more closely related to each other than with similar looking individuals collected in the other ocean basin. Nonetheless, there were low, yet significant differences at microsatellite loci among co-occurring populations of R. mangle and R. racemosa in both ocean basins, suggesting that two taxonomic groups coexist. However, we found no genetic evidence that R. harrisonii was a hybrid species. Rather, R. harrisonii appears to represent a morphotype produced by ongoing hybridization and backcrossing between R. mangle and R. racemosa. * Conclusions: Our data support ancient and persistent introgressive hybridization among new world Rhizophora and argue for a full revision of the systematic relationships of the group based on much finer morphological, ecological, and genetic analyses.

Genomic Hotspots for Adaptation: The Population Genetics of Mullerian Mimicry in the Heliconius melpomene Clade

Smithsonian Libraries
Wing patterning in Heliconius butterflies is a longstanding example of both Mullerian mimicry and phenotypic radiation under strong natural selection. The loci controlling such patterns are "hotspots" for adaptive evolution with great allelic diversity across different species in the genus. We characterise nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium, and candidate gene expression at two loci and across multiple hybrid zones in Heliconius melpomene and relatives. Alleles at HmB control the presence or absence of the red forewing band, while alleles at HmYb control the yellow hindwing bar. Across HmYb two regions, separated by similar to 100 kb, show significant genotype-by-phenotype associations that are replicated across independent hybrid zones. In contrast, at HmB a single peak of association indicates the likely position of functional sites at three genes, encoding a kinesin, a G-protein coupled receptor, and an mRNA splicing factor. At both HmYb and HmB there is evidence for enhanced linkage disequilibrium (LD) between associated sites separated by up to 14 kb, suggesting that multiple sites are under selection. However, there was no evidence for reduced variation or deviations from neutrality that might indicate a recent selective sweep, consistent with these alleles being relatively old. Of the three genes showing an association with the HmB locus, the kinesin shows differences in wing disc expression between races that are replicated in the co-mimic, Heliconius erato, providing striking evidence for parallel changes in gene expression between Mullerian co-mimics. Wing patterning loci in Heliconius melpomene therefore show a haplotype structure maintained by selection, but no evidence for a recent selective sweep. The complex genetic pattern contrasts with the simple genetic basis of many adaptive traits studied previously, but may provide a better model for most adaptation in natural populations that has arisen over millions rather than tens of years.

Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

Smithsonian Libraries
The evolutionary importance of hybridization and introgression has long been debated(1). Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation(2-5). We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.