Skip to Content

Did you mean: kronforst mars r

Found 3 Resources

Wing patterning gene redefines the mimetic history of Heliconius butterflies

Smithsonian Libraries
The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80–250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns.

Phylogeography and sexual macrocyst formation in the social amoeba Dictyostelium giganteum

Smithsonian Libraries
Background: Microorganisms are ubiquitous, yet we are only beginning to understand their diversity and population structure. Social amoebae (Dictyostelia) are a diverse group of unicellular eukaryotic microbes that display a unique social behaviour upon starvation in which cells congregate and then some die to help others survive and disperse. The genetic relationships among co-occurring cells have a major influence on the evolution of social traits and recent population genetic analysis found extensive genetic variation and possible cryptic speciation in one dictyostelid species ( Dictyostelium purpureum). To further characterize the interplay among genetic variation, species boundaries, social behaviour, and reproductive isolation in the Dictyostelia, we conducted phylogenetic analyses and mating experiments with the geographically widespread social amoeba Dictyostelium giganteum. Results: We sequenced approximately 4,000 basepairs of the nuclear ribosomal DNA from 24 isolates collected from Texas, Michigan, Massachusetts, Virginia, and Wisconsin and identified 16 unique haplotypes. Analyses of the sequence data revealed very little genetic differentiation among isolates and no clear evidence of phylogenetic structure, although there was evidence for some genetic differentiation between the Massachusetts and Texas populations. These results suggest that sexual mating ( macrocyst formation) is not likely to correlate with either genetic or geographical distance. To test this prediction, we performed 108 mating experiments and found no association between mating probability and genetic or geographical distance. Conclusions: D. giganteum isolates from across North America display little genetic variation, phylogeographic structure, and genetic differentiation among populations relative to the cryptic species observed within D. purpureum. Furthermore, variation that does exist does not predict the probability of mating among clones. These results have important implications for our understanding of speciation and social evolution in microbes.

Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

Smithsonian Libraries
The evolutionary importance of hybridization and introgression has long been debated(1). Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation(2-5). We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.